Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.049
Filtrar
1.
Biochem Soc Trans ; 52(2): 719-731, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563485

RESUMO

The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.


Assuntos
Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Humanos , Amiloide/química , Amiloide/metabolismo , Agregados Proteicos , Doença de Huntington/metabolismo , Doença de Huntington/genética , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Dobramento de Proteína , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166928, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38660915

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder with clinical presentations of moderate to severe cognitive, motor, and psychiatric disturbances. HD is caused by the trinucleotide repeat expansion of CAG of the huntingtin (HTT) gene. The mutant HTT protein containing pathological polyglutamine (polyQ) extension is prone to misfolding and aggregation in the brain. It has previously been observed that copper and iron concentrations are increased in the striata of post-mortem human HD brains. Although it has been shown that the accumulation of mutant HTT protein can interact with copper, the underlying HD progressive phenotypes due to copper overload remains elusive. Here, in a Drosophila model of HD, we showed that copper induces dose-dependent aggregational toxicity and enhancement of Htt-induced neurodegeneration. Specifically, we found that copper increases mutant Htt aggregation, enhances the accumulation of Thioflavin S positive ß-amyloid structures within Htt aggregates, and consequently alters autophagy in the brain. Administration of copper chelator D-penicillamine (DPA) through feeding significantly decreases ß-amyloid aggregates in the HD pathological model. These findings reveal a direct role of copper in potentiating mutant Htt protein-induced aggregational toxicity, and further indicate the potential impact of environmental copper exposure in the disease onset and progression of HD.


Assuntos
Cobre , Modelos Animais de Doenças , Proteína Huntingtina , Doença de Huntington , Animais , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Cobre/metabolismo , Cobre/toxicidade , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Mutação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética
3.
Mol Med ; 30(1): 36, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459427

RESUMO

BACKGROUND: The disease-causing mutation in Huntington disease (HD) is a CAG trinucleotide expansion in the huntingtin (HTT) gene. The mutated CAG tract results in the production of a small RNA, HTT1a, coding for only exon 1 of HTT. HTT1a is generated by a block in the splicing reaction of HTT exon 1 to exon 2 followed by cleavage in intron 1 and polyadenylation. Translation of HTT1a leads to the expression of the highly toxic HTT exon 1 protein fragment. We have previously shown that the levels of HTT1a expression in mouse models of HD is dependent on the CAG repeat length. However, these data are lacking for human tissues. METHODS: To answer this question, we developed highly sensitive digital PCR assays to determine HTT1a levels in human samples. These assays allow the absolute quantification of transcript numbers and thus also facilitate the comparison of HTT1a levels between tissues, cell types and across different studies. Furthermore, we measured CAG repeat sizes for every sample used in the study. Finally, we analysed our data with ANOVA and linear modelling to determine the correlation of HTT1a expression levels with CAG repeat sizes. RESULTS: In summary, we show that HTT1a is indeed expressed in a CAG repeat-length-dependent manner in human post mortem brain tissues as well as in several peripheral cell types. In particular, PBMCs show a statistically significant positive correlation of HTT1a expression with CAG repeat length, and elevated HTT1a expression levels even in the adult-onset CAG repeat range. CONCLUSIONS: Our results show that HTT1a expression occurs throughout a wide range of tissues and likely with all CAG lengths. Our data from peripheral sample sources demonstrate that HTT1a is indeed generated throughout the body in a CAG repeat-length-dependent manner. Therefore, the levels of HTT1a might be a sensitive marker of disease state and/or progression and should be monitored over time, especially in clinical trials targeting HTT expression.


Assuntos
Proteína Huntingtina , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Adulto , Animais , Humanos , Camundongos , Éxons/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Neurônios/metabolismo , RNA/metabolismo
4.
J Huntingtons Dis ; 13(1): 41-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427495

RESUMO

Background: Mutations in the Huntingtin (HTT) gene cause Huntington's disease (HD), a neurodegenerative disorder. As a scaffold protein, HTT is involved in numerous cellular functions, but its normal and pathogenic functions during human forebrain development are poorly understood. Objective: To investigate the developmental component of HD, with a specific emphasis on understanding the functions of wild-type and mutant HTT alleles during forebrain neuron development in individuals carrying HD mutations. Methods: We used CRISPR/Cas9 gene-editing technology to disrupt the ATG region of the HTT gene via non-homologous end joining to produce mono- or biallelic HTT knock-out human induced pluripotent stem cell (iPSC) clones. Results: We showed that the loss of wild-type, mutant, or both HTT isoforms does not affect the pluripotency of iPSCs or their transition into neural cells. However, we observed that HTT loss causes division impairments in forebrain neuro-epithelial cells and alters maturation of striatal projection neurons (SPNs) particularly in the acquisition of DARPP32 expression, a key functional marker of SPNs. Finally, young post-mitotic neurons derived from HTT-/- human iPSCs display cellular dysfunctions observed in adult HD neurons. Conclusions: We described a novel collection of isogenic clones with mono- and biallelic HTT inactivation that complement existing HD-hiPSC isogenic series to explore HTT functions and test therapeutic strategies in particular HTT-lowering drugs. Characterizing neural and neuronal derivatives from human iPSCs of this collection, we show evidence that HTT loss or mutation has impacts on neuro-epithelial and striatal neurons maturation, and on basal DNA damage and BDNF axonal transport in post-mitotic neurons.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Huntington/metabolismo , Neurônios/metabolismo , Corpo Estriado/metabolismo , Alelos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
5.
J Huntingtons Dis ; 13(1): 103-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461512

RESUMO

Background: Huntington's disease (HD) is a neurodegenerative disorder caused by expanded cytosine-adenine-guanine (CAG) repeats in the Huntingtin gene, resulting in the production of mutant huntingtin proteins (mHTT). Previous research has identified urea as a key metabolite elevated in HD animal models and postmortem tissues of HD patients. However, the relationship between disease course and urea elevations, along with the molecular mechanisms responsible for these disturbances remain unknown. Objective: To better understand the molecular disturbances and timing of urea cycle metabolism across different stages in HD. Methods: We completed a global metabolomic profile of cerebrospinal fluid (CSF) from individuals who were at several stages of disease: pre-manifest (PRE), manifest (MAN), and late manifest (LATE) HD participants, and compared to controls. Results: Approximately 500 metabolites were significantly altered in PRE participants compared to controls, although no significant differences in CSF urea or urea metabolites were observed. CSF urea was significantly elevated in LATE participants only. There were no changes in the urea metabolites citrulline, ornithine, and arginine. Conclusions: Overall, our study confirms that CSF elevations occur late in the HD course, and these changes may reflect accumulating deficits in cellular energy metabolism.


Assuntos
Doença de Huntington , Animais , Humanos , Doença de Huntington/genética , Ureia/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Progressão da Doença
6.
PLoS One ; 19(3): e0298323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483973

RESUMO

Huntington's Disease (HD) is a fatal, neurodegenerative disease caused by aggregation of the huntingtin protein (htt) with an expanded polyglutamine (polyQ) domain into amyloid fibrils. Htt aggregation is modified by flanking sequences surrounding the polyQ domain as well as the binding of htt to lipid membranes. Upon fibrillization, htt fibrils are able to template the aggregation of monomers into fibrils in a phenomenon known as seeding, and this process appears to play a critical role in cell-to-cell spread of HD. Here, exposure of C. elegans expressing a nonpathogenic N-terminal htt fragment (15-repeat glutamine residues) to preformed htt-exon1 fibrils induced inclusion formation and resulted in decreased viability in a dose dependent manner, demonstrating that seeding can induce toxic aggregation of nonpathogenic forms of htt. To better understand this seeding process, the impact of flanking sequences adjacent to the polyQ stretch, polyQ length, and the presence of model lipid membranes on htt seeding was investigated. Htt seeding readily occurred across polyQ lengths and was independent of flanking sequence, suggesting that the structured polyQ domain within fibrils is the key contributor to the seeding phenomenon. However, the addition of lipid vesicles modified seeding efficiency in a manner suggesting that seeding primarily occurs in bulk solution and not at the membrane interface. In addition, fibrils formed in the presence of lipid membranes displayed similar seeding efficiencies. Collectively, this suggests that the polyQ domain that forms the amyloid fibril core is the main driver of seeding in htt aggregation.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Peptídeos , Animais , Humanos , Proteína Huntingtina/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Amiloide/metabolismo , Lipídeos
7.
Zool Res ; 45(2): 275-283, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485497

RESUMO

Huntington's disease (HD) is a hereditary neurodegenerative disorder for which there is currently no effective treatment available. Consequently, the development of appropriate disease models is critical to thoroughly investigate disease progression. The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin ( HTT) gene, leading to the expansion of a polyglutamine repeat in the HTT protein. Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain, which precipitate selective neuronal loss in specific brain regions. Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets. Due to the marked species differences between rodents and larger animals, substantial efforts have been directed toward establishing large animal models for HD research. These models are pivotal for advancing the discovery of novel therapeutic targets, enhancing effective drug delivery methods, and improving treatment outcomes. We have explored the advantages of utilizing large animal models, particularly pigs, in previous reviews. Since then, however, significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD. In the current review, we provide a comprehensive overview of large animal models of HD, incorporating recent findings regarding the establishment of HD knock-in (KI) pigs and their genetic therapy. We also explore the utilization of large animal models in HD research, with a focus on sheep, non-human primates (NHPs), and pigs. Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.


Assuntos
Doença de Huntington , Doenças dos Ovinos , Doenças dos Suínos , Animais , Ovinos , Suínos , Doença de Huntington/genética , Doença de Huntington/terapia , Doença de Huntington/metabolismo , Doença de Huntington/veterinária , Modelos Animais de Doenças , Primatas/genética , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/patologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/patologia
8.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498709

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Nucleotidiltransferases/genética , DNA , Apoptose/genética , Proteína 1 Homóloga a MutL/genética
9.
Methods Mol Biol ; 2761: 421-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427253

RESUMO

Huntington's disease (HD) pathogenesis involves deregulation of coding and noncoding RNA transcripts of which the involvement of long noncoding RNAs (lncRNA) has been realized recently. Of these, Meg3, Neat1, and Xist showed a consistent and significant increase in HD cell and animal models. In the present study, we formulate a methodology to visualize and quantify intracellular aggregates formed by mutant HTT protein. This method employs the use of both confocal laser scanning and super resolution (N-SIM) microscopy to accurately estimate aggregate numbers. Further, to determine the role of two lncRNAs Meg3 and Neat1 in the formation of aggregates of mutant HTT, we used commercially available siRNAs against Meg3 and Neat1 for transiently knocking them down in mouse Neuro2a and human SHSY5Y cells. Co-transfection of 83Q-DsRed and siRNA specific for Neat1 or Meg3 resulted in decreased intracellular aggregates of 83Q-DsRed in both the cell lines. We have established a quantitative method to estimate and directly or indirectly modulate the formation of mutant HTT aggregates.


Assuntos
Doença de Huntington , RNA Longo não Codificante , Camundongos , Humanos , Animais , RNA Longo não Codificante/genética , Agregados Proteicos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Linhagem Celular , RNA não Traduzido , Transfecção , Doença de Huntington/patologia
10.
J Huntingtons Dis ; 13(1): 33-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393920

RESUMO

Somatic instability of the huntingtin (HTT) CAG repeat mutation modifies age-at-onset of Huntington's disease (HD). Understanding the mechanism and pathogenic consequences of instability may reveal therapeutic targets. Using small-pool PCR we analyzed CAG instability in the OVT73 sheep model which expresses a full-length human cDNA HTT transgene. Analyses of five- and ten-year old sheep revealed the transgene (CAG)69 repeat was remarkably stable in liver, striatum, and other brain tissues. As OVT73 sheep at ten years old have minimal cell death and behavioral changes, our findings support instability of the HTT expanded-CAG repeat as being required for the progression of HD.


Assuntos
Doença de Huntington , Animais , Ovinos/genética , Humanos , Criança , Pré-Escolar , Doença de Huntington/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Mutação , Idade de Início , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Modelos Animais de Doenças
11.
EMBO Mol Med ; 16(3): 523-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374466

RESUMO

Huntington's disease (HD) is an incurable inherited disorder caused by a repeated expansion of glutamines in the huntingtin gene (Htt). The mutant protein causes neuronal degeneration leading to severe motor and psychological symptoms. Selective downregulation of the mutant Htt gene expression is considered the most promising therapeutic approach for HD. We report the identification of small molecule inhibitors of Spt5-Pol II, SPI-24 and SPI-77, which selectively lower mutant Htt mRNA and protein levels in HD cells. In the BACHD mouse model, their direct delivery to the striatum diminished mutant Htt levels, ameliorated mitochondrial dysfunction, restored BDNF expression, and improved motor and anxiety-like phenotypes. Pharmacokinetic studies revealed that these SPIs pass the blood-brain-barrier. Prolonged subcutaneous injection or oral administration to early-stage mice significantly delayed disease deterioration. SPI-24 long-term treatment had no side effects or global changes in gene expression. Thus, lowering mutant Htt levels by small molecules can be an effective therapeutic strategy for HD.


Assuntos
Doença de Huntington , Animais , Camundongos , Encéfalo/metabolismo , Corpo Estriado , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Fenótipo , RNA Mensageiro/genética
12.
Sci Rep ; 14(1): 4176, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378796

RESUMO

Huntington's disease (HD) is caused by an aberrant expansion of CAG repeats in the HTT gene that mainly affects basal ganglia. Although striatal dysfunction has been widely studied in HD mouse models, other brain areas can also be relevant to the pathology. In this sense, we have special interest on the retina as this is the most exposed part of the central nervous system that enable health monitoring of patients using noninvasive techniques. To establish the retina as an appropriate tissue for HD studies, we need to correlate the retinal alterations with those in the inner brain, i.e., striatum. We confirmed the malfunction of the transgenic R6/1 retinas, which underwent a rearrangement of their transcriptome as extensive as in the striatum. Although tissue-enriched genes were downregulated in both areas, a neuroinflammation signature was only clearly induced in the R6/1 retina in which the observed glial activation was reminiscent of the situation in HD patient's brains. The retinal neuroinflammation was confirmed in the slow progressive knock-in zQ175 strain. Overall, these results demonstrated the suitability of the mouse retina as a research model for HD and its associated glial activation.


Assuntos
Doença de Huntington , Camundongos , Animais , Humanos , Doença de Huntington/patologia , Camundongos Transgênicos , Gliose/genética , Gliose/patologia , Microglia/metabolismo , Doenças Neuroinflamatórias , Modelos Animais de Doenças , Corpo Estriado/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
13.
Sci Rep ; 14(1): 4300, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383663

RESUMO

DNA mismatch repair (MMR) is thought to contribute to the onset and progression of Huntington disease (HD) by promoting somatic expansion of the pathogenic CAG nucleotide repeat in the huntingtin gene (HTT). Here we have studied constitutional HTT CAG repeat size in two cohorts of individuals with Lynch syndrome (LS) carrying heterozygous loss-of-function variants in the MMR genes MLH1 (n = 12/60; Lund cohort/Bochum cohort, respectively), MSH2 (n = 15/88), MSH6 (n = 21/23), and controls (n = 19/559). The sum of CAG repeats for both HTT alleles in each individual was calculated due to unknown segregation with the LS allele. In the larger Bochum cohort, the sum of CAG repeats was lower in the MLH1 subgroup compared to controls (MLH1 35.40 CAG repeats ± 3.6 vs. controls 36.89 CAG repeats ± 4.5; p = 0.014). All LS genetic subgroups in the Bochum cohort displayed lower frequencies of unstable HTT intermediate alleles and lower HTT somatic CAG repeat expansion index values compared to controls. Collectively, our results indicate that MMR gene haploinsufficiency could have a restraining impact on constitutional HTT CAG repeat size and support the notion that the MMR pathway is a driver of nucleotide repeat expansion diseases.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Doença de Huntington , Humanos , Expansão das Repetições de Trinucleotídeos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Alelos , Reparo de Erro de Pareamento de DNA/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia
14.
Cell Death Dis ; 15(2): 126, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341417

RESUMO

Huntington disease (HD) is a neurodegenerative disease caused by the abnormal expansion of a polyglutamine tract resulting from a mutation in the HTT gene. Oxidative stress has been identified as a significant contributing factor to the development of HD and other neurodegenerative diseases, and targeting anti-oxidative stress has emerged as a potential therapeutic approach. CHCHD2 is a mitochondria-related protein involved in regulating cell migration, anti-oxidative stress, and anti-apoptosis. Although CHCHD2 is highly expressed in HD cells, its specific role in the pathogenesis of HD remains uncertain. We postulate that the up-regulation of CHCHD2 in HD models represents a compensatory protective response against mitochondrial dysfunction and oxidative stress associated with HD. To investigate this hypothesis, we employed HD mouse striatal cells and human induced pluripotent stem cells (hiPSCs) as models to examine the effects of CHCHD2 overexpression (CHCHD2-OE) or knockdown (CHCHD2-KD) on the HD phenotype. Our findings demonstrate that CHCHD2 is crucial for maintaining cell survival in both HD mouse striatal cells and hiPSCs-derived neurons. Our study demonstrates that CHCHD2 up-regulation in HD serves as a compensatory protective response against oxidative stress, suggesting a potential anti-oxidative strategy for the treatment of HD.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Animais , Camundongos , Humanos , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Regulação para Cima/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Oxidativo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Neuron ; 112(6): 924-941.e10, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38237588

RESUMO

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.


Assuntos
Doença de Huntington , Animais , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Córtex Cerebral/metabolismo , Núcleo Solitário/metabolismo , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
16.
Metab Brain Dis ; 39(4): 559-567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261161

RESUMO

Mutant huntingtin (mHtt) proteins interact to form aggregates, disrupting cellular functions including transcriptional dysregulation and iron imbalance in patients with Huntington's disease (HD) and mouse disease models. Previous studies have indicated that mHtt may lead to abnormal iron homeostasis by upregulating the expression of iron response protein 1 (IRP1) in the striatum and cortex of N171-82Q HD transgenic mice, as well as in HEK293 cells expressing the N-terminal fragment of mHtt containing 160 CAG repeats. However, the mechanism underlying the upregulation of IRP1 remains unclear. We investigated the levels and phosphorylation status of signal transducer and activator of transcription 5 (STAT5) in the brains of N171-82Q HD transgenic mice using immunohistochemistry staining. We also assessed the nuclear localization of STAT5 protein through western blot and immunofluorescence, and measured the relative RNA expression levels of STAT5 and IRP1 using RT-PCR in both N171-82Q HD transgenic mice and HEK293 cells expressing the N-terminal fragment of huntingtin. Our findings demonstrate that the transcription factor STAT5 regulates the transcription of the IPR1 gene in HEK293 cells. Notably, both the brains of N171-82Q mice and 160Q HEK293 cells exhibited increased nuclear content of STAT5, despite unchanged total STAT5 expression. These results suggest that mHtt promotes the nuclear translocation of STAT5, leading to enhanced expression of IRP1. The nuclear translocation of STAT5 initiates abnormal iron homeostatic pathways, characterized by elevated IRP1 expression, increased levels of transferrin and transferrin receptor, and iron accumulation in the brains of HD mice. These findings provide valuable insights into potential therapeutic strategies targeting iron homeostasis in HD.


Assuntos
Doença de Huntington , Sobrecarga de Ferro , Proteína 1 Reguladora do Ferro , Camundongos Transgênicos , Fator de Transcrição STAT5 , Regulação para Cima , Doença de Huntington/metabolismo , Doença de Huntington/genética , Animais , Humanos , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Células HEK293 , Camundongos , Sobrecarga de Ferro/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Núcleo Celular/metabolismo , Encéfalo/metabolismo
17.
J Control Release ; 367: 27-44, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215984

RESUMO

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Assuntos
Doença de Huntington , Oligonucleotídeos Antissenso , Camundongos , Animais , Oligonucleotídeos Antissenso/uso terapêutico , Apolipoproteína A-I/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapêutico , Modelos Animais de Doenças
18.
Exp Neurol ; 374: 114675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216109

RESUMO

Huntington's Disease (HD) is a progressive neurodegenerative disease caused by a mutation in the huntingtin gene. The mutation leads to a toxic gain of function of the mutant huntingtin (mHtt) protein resulting in cellular malfunction, aberrant huntingtin aggregation and eventually neuronal cell death. Patients with HD show impaired motor functions and cognitive decline. Elevated levels of glucocorticoids have been found in HD patients and in HD mouse models, and there is a positive correlation between increased glucocorticoid levels and the progression of HD. Therefore, antagonism of the glucocorticoid receptor (GR) may be an interesting strategy for the treatment of HD. In this study, we evaluated the efficacy of the selective GR antagonist CORT113176 in the commonly used R6/2 mouse model. In male mice, CORT113176 treatment significantly delayed the loss of grip strength, the development of hindlimb clasping, gait abnormalities, and the occurrence of epileptic seizures. CORT113176 treatment delayed loss of DARPP-32 immunoreactivity in the dorsolateral striatum. It also restored HD-related parameters including astrocyte markers in both the dorsolateral striatum and the hippocampus, and microglia markers in the hippocampus. This suggests that CORT113176 has both cell-type and brain region-specific effects. CORT113176 delayed the formation of mHtt aggregates in the striatum and the hippocampus. In female mice, we did not observe major effects of CORT113176 treatment on HD-related symptoms, with the exception of the anti-epileptic effects. We conclude that CORT113176 effectively delays several key symptoms related to the HD phenotype in male R6/2 mice and believe that GR antagonism may be a possible treatment option.


Assuntos
Doença de Huntington , Isoquinolinas , Doenças Neurodegenerativas , Pirazóis , Animais , Feminino , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/complicações , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Receptores de Glucocorticoides
19.
J Med Chem ; 67(2): 783-815, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38207096

RESUMO

Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by a mutation in the huntingtin (HTT) gene, resulting in the production of a mutant huntingtin protein (mHTT). The accumulation of mHTT leads to the development of toxic aggregates in neurons, causing cell dysfunction and, eventually, cell death. Peptide therapeutics target various aspects of HD pathology, including mHTT reduction and aggregation inhibition, extended CAG mRNA degradation, and modulation of dysregulated signaling pathways, such as BDNF/TrkB signaling. In addition, these peptide therapeutics also target the detrimental interactions of mHTT with InsP3R1, CaM, or Caspase-6 proteins to mitigate HD. This Perspective provides a detailed perspective on anti-HD therapeutic peptides, highlighting their design, structural characteristics, neuroprotective effects, and specific mechanisms of action. Peptide therapeutics for HD exhibit promise in preclinical models, but further investigation is required to confirm their effectiveness as viable therapeutic strategies, recognizing that no approved peptide therapy for HD currently exists.


Assuntos
Doença de Huntington , Humanos , Animais , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Transdução de Sinais , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
20.
Biochem Biophys Res Commun ; 691: 149246, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38029540

RESUMO

Huntington's disease (HD) is a progressive genetic neurodegenerative disease caused by an abnormal expansion of a cytosine-adenine-guanine trinucleotide repeat in the huntingtin gene. One pathological feature of HD is neuronal loss in the striatum. Despite many efforts, mechanisms underlying neuronal loss in HD striatum remain elusive. It was suggested that the mutant huntingtin protein interacts mitochondrial proteins and causes mitochondrial dysfunction in striatal neurons. However, whether axonal transport of mitochondria is altered in HD striatal neurons remains controversial. Here, we examined axonal transport of single mitochondria labelled with Mito-DsRed2 in cultured striatal neurons of zQ175 knock-in mice (a knock-in mouse model of HD). We observed decreased anterograde axonal transport of proximal mitochondria in HD striatal neurons compared with wild-type (WT) striatal neurons. Decreased anterograde transport in HD striatal neurons was prevented by overexpressing mitochondrial Rho GTPase 1 (Miro1). Our results offer a new insight into mechanisms underlying neuronal loss in the striatum in HD.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Huntington/metabolismo , Transporte Axonal , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...